Expression of PPARγ and Paraoxonase 2 Correlated with Pseudomonas aeruginosa Infection in Cystic Fibrosis
نویسندگان
چکیده
The Pseudomonas aeruginosa quorum sensing signal molecule N-3-oxododecanoyl-l-homoserine lactone (3OC(12)HSL) can inhibit function of the mammalian anti-inflammatory transcription factor peroxisome proliferator activated receptor (PPAR)γ, and can be degraded by human paraoxonase (PON)2. Because 3OC(12)HSL is detected in lungs of cystic fibrosis (CF) patients infected with P. aeruginosa, we investigated the relationship between P. aeruginosa infection and gene expression of PPARγ and PON2 in bronchoalveolar lavage fluid (BALF) of children with CF. Total RNA was extracted from cell pellets of BALF from 43 children aged 6 months-5 years and analyzed by reverse transcription-quantitative real time PCR for gene expression of PPARγ, PON2, and P. aeruginosa lasI, the 3OC(12)HSL synthase. Patients with culture-confirmed P. aeruginosa infection had significantly lower gene expression of PPARγ and PON2 than patients without P. aeruginosa infection. All samples that were culture-positive for P. aeruginosa were also positive for lasI expression. There was no significant difference in PPARγ or PON2 expression between patients without culture-detectable infection and those with non-Pseudomonal bacterial infection, so reduced expression was specifically associated with P. aeruginosa infection. Expression of both PPARγ and PON2 was inversely correlated with neutrophil counts in BALF, but showed no correlation with other variables evaluated. Thus, lower PPARγ and PON2 gene expression in the BALF of children with CF is associated specifically with P. aeruginosa infection and neutrophilia. We cannot differentiate whether this is a cause or the effect of P. aeruginosa infection, but propose that the level of expression of these genes may be a marker for susceptibility to early acquisition of P. aeruginosa in children with CF.
منابع مشابه
Antibiotic Susceptibility of Pseudomonas Aeruginosa Isolated from Cystic Fibrosis Patients
Abstract Background and Objective: Cystic fibrosis (CF) is an autosomal recessive genetic disease and Pseudomonas aeruginosa is one of the most common bacteria colonized in CF patients. Growing resistance of this bacterium to antibiotics now a day is a challenge of controlling infection in CF patient. In this study colonization of CF patients with Pseudomonas aeruginosa and antibiotic suscep...
متن کاملGenetic Profiling of Pseudomonas aeruginosa Isolates from Iranian Patients with Cystic Fibrosis Using RAPD-PCR and PFGE
Objective(s) Pseudomonas aeruginosa is the most important cause of chronic lung infections and death in patients with cystic fibrosis. Determining the distribution of specific strains within patient populations is important in order to examine the epidemiology of the disease and the possibility of cross infection among patients. Materials and Methods Forty six Iranian patients with cystic fib...
متن کاملDetection of Ampc and Extended-Spectrum Beta-Lactamases in Clinical Isolates of Pseudomonas Aeruginosa from Patients with Cystic Fibrosis
ABSTRACT Background and Objectives: Pseudomonas aeruginosa is the most frequent opportunistic pathogen isolated from the sputum of patients with cystic fibrosis (CF). Resistance to β -lactam antibiotics may arise from over expression of the naturally occurring AmpC cephalosporinases or acquired extended-spectrum β-lactamases (ESBL). The aim of...
متن کاملIsolation and Genetic Fingerprinting of Pseudomonas aeruginosa from Iranian Patients with Cystic Fibrosis Using RAPD-PCR
Sixty four Iranian patients with cystic fibrosis (CF) were studied for colonization with Pseudomonasaeruginosa. The patient’s age ranged between 2 months to 18 years old. Twenty one patients werecolonized, 15 with non-mucoid and 6 with mucoid strains of P. aeruginosa. The colonization rateincreased with age and the mucoid phenotype was only recovered from the older patients. A...
متن کاملEnhanced Clearance of Pseudomonas aeruginosa by Peroxisome Proliferator-Activated Receptor Gamma.
The pathogenic profile of Pseudomonas aeruginosa is related to its ability to secrete a variety of virulence factors. Quorum sensing (QS) is a mechanism wherein small diffusible molecules, specifically acyl-homoserine lactones, are produced by P. aeruginosa to promote virulence. We show here that macrophage clearance of P. aeruginosa (PAO1) is enhanced by activation of the nuclear hormone recep...
متن کامل